Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 12(1): 22191, 2022 12 23.
Article in English | MEDLINE | ID: covidwho-2186037

ABSTRACT

Extracellular vesicles (EVs) participate in cell-to-cell communication and contribute toward homeostasis under physiological conditions. But EVs can also contribute toward a wide array of pathophysiology like cancer, sepsis, sickle cell disease, and thrombotic disorders. COVID-19 infected patients are at an increased risk of aberrant coagulation, consistent with elevated circulating levels of ultra-high molecular weight VWF multimers, D-dimer and procoagulant EVs. The role of EVs in COVID-19 related hemostasis may depend on cells of origin, vesicular cargo and size, however this is not well defined. We hypothesized that the procoagulant potential of EV isolates from COVID-19 (+) patient plasmas could be defined by thrombin generation assays. Here we isolated small EVs (SEVs) and large EVs (LEVs) from hospitalized COVID-19 (+) patient (n = 21) and healthy donor (n = 20) plasmas. EVs were characterized by flow cytometry, Transmission electron microscopy, nanoparticle tracking analysis, plasma thrombin generation and a multi-omics approach to define coagulation potential. These data were consistent with differences in EV metabolite, lipid, and protein content when compared to healthy donor plasma isolated SEVs and LEVs. Taken together, the effect of EVs on plasma procoagulant potential as defined by thrombin generation and supported by multi-omics is enhanced in COVID-19. Further, we observe that this effect is driven both by EV size and phosphatidyl serine.


Subject(s)
COVID-19 , Extracellular Vesicles , Thrombosis , Humans , Thrombin/metabolism , COVID-19/complications , Extracellular Vesicles/metabolism , Blood Coagulation , Thrombosis/metabolism
2.
Pediatr Crit Care Med ; 23(12): 968-979, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2135786

ABSTRACT

OBJECTIVES: Interest in using bedside C-reactive protein (CRP) and ferritin levels to identify patients with hyperinflammatory sepsis who might benefit from anti-inflammatory therapies has piqued with the COVID-19 pandemic experience. Our first objective was to identify patterns in CRP and ferritin trajectory among critically ill pediatric sepsis patients. We then examined the association between these different groups of patients in their inflammatory cytokine responses, systemic inflammation, and mortality risks. DATA SOURCES: A prospective, observational cohort study. STUDY SELECTION: Children with sepsis and organ failure in nine pediatric intensive care units in the United States. DATA EXTRACTION: Two hundred and fifty-five children were enrolled. Five distinct clinical multi-trajectory groups were identified. Plasma CRP (mg/dL), ferritin (ng/mL), and 31 cytokine levels were measured at two timepoints during sepsis (median Day 2 and Day 5). Group-based multi-trajectory models (GBMTM) identified groups of children with distinct patterns of CRP and ferritin. DATA SYNTHESIS: Group 1 had normal CRP and ferritin levels ( n = 8; 0% mortality); Group 2 had high CRP levels that became normal, with normal ferritin levels throughout ( n = 80; 5% mortality); Group 3 had high ferritin levels alone ( n = 16; 6% mortality); Group 4 had very high CRP levels, and high ferritin levels ( n = 121; 11% mortality); and Group 5 had very high CRP and very high ferritin levels ( n = 30; 40% mortality). Cytokine responses differed across the five groups, with ferritin levels correlated with macrophage inflammatory protein 1α levels and CRP levels reflective of many cytokines. CONCLUSIONS: Bedside CRP and ferritin levels can be used together to distinguish groups of children with sepsis who have different systemic inflammation cytokine responses and mortality risks. These data suggest future potential value in personalized clinical trials with specific targets for anti-inflammatory therapies.


Subject(s)
COVID-19 , Sepsis , Child , Humans , C-Reactive Protein/metabolism , Prospective Studies , Pandemics , Biomarkers , Ferritins , Inflammation , Cytokines/metabolism
3.
Crit Care Explor ; 3(3): e0374, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1158030

ABSTRACT

OBJECTIVES: Since the beginning of the coronavirus disease 2019 pandemic, hundreds of thousands of patients have been treated in ICUs across the globe. The severe acute respiratory syndrome-associated coronavirus 2 virus enters cells via the angiotensin-converting enzyme 2 receptor and activates several distinct inflammatory pathways, resulting in hematologic abnormalities and dysfunction in respiratory, cardiac, gastrointestinal renal, endocrine, dermatologic, and neurologic systems. This review summarizes the current state of research in coronavirus disease 2019 pathophysiology within the context of potential organ-based disease mechanisms and opportunities for translational research. DATA SOURCES: Investigators from the Research Section of the Society of Critical Care Medicine were selected based on expertise in specific organ systems and research focus. Data were obtained from searches conducted in Medline via the PubMed portal, Directory of Open Access Journals, Excerpta Medica database, Latin American and Caribbean Health Sciences Literature, and Web of Science from an initial search from December 2019 to October 15, 2020, with a revised search to February 3, 2021. The medRxiv, Research Square, and clinical trial registries preprint servers also were searched to limit publication bias. STUDY SELECTION: Content experts selected studies that included mechanism-based relevance to the severe acute respiratory syndrome-associated coronavirus 2 virus or coronavirus disease 2019 disease. DATA EXTRACTION: Not applicable. DATA SYNTHESIS: Not applicable. CONCLUSIONS: Efforts to improve the care of critically ill coronavirus disease 2019 patients should be centered on understanding how severe acute respiratory syndrome-associated coronavirus 2 infection affects organ function. This review articulates specific targets for further research.

SELECTION OF CITATIONS
SEARCH DETAIL